
6 Geometry of Complex Numbers

1. Explain why 𝑖𝑧 is perpendicular to 𝑧, without using DeMoivre’s theorem.

Let 𝑧 = 𝑎+ 𝑏𝑖. Then 𝑖𝑧 = 𝑖(𝑎+ 𝑏𝑖) = −𝑏+ 𝑎𝑖, which is the transformation (𝑎, 𝑏) → (−𝑏, 𝑎). Drawing this out
on the 2D plane makes clear that the angle between the two points and the origin is 90◦, simply by subtracting
angles: (90◦ + 𝜃) − 𝜃 = 90◦. This is shown in Figure 1.

𝑧 = (𝑎, 𝑏)

(−𝑏, 𝑎) = 𝑖𝑧 𝑏

𝑎

𝑏

𝑎
𝜃

90◦ + 𝜃

Figure 1: 𝑖𝑧 is perpendicular to 𝑧 as long as 𝑧 ≠ 0.

You can also explain it by observing that the lines through 𝑧/𝑖𝑧 and the origin have slopes of 𝑏
𝑎 and − 𝑎

𝑏 ,
respectively, so they must be perpendicular. In terms of vectors, < 𝑎, 𝑏 > ⋅ < −𝑏, 𝑎 >= 0, with ⋅ being the dot
product.

2. How does Arg 𝑧 relate to Arg 𝑧? (Hint: symmetry!)

Again, let 𝑧 = 𝑎 + 𝑏𝑖. 𝑧 = 𝑎 − 𝑏𝑖 is 𝑧 flipped over the 𝑥-axis, since the imaginary part is negated. Thus,
Arg 𝑧 = −Arg 𝑧 due to congruent triangles formed by 𝑧 and 𝑧.13 The geometric interpretation is shown in
Figure 2.

𝑧

𝑧

−𝜃
𝜃

Figure 2: 𝑧 and 𝑧 form congruent triangles, showing that Arg 𝑧 = −Arg 𝑧.

13The pedants may criticize my use of the equality symbol here; take this equality as modulo 2𝜋 if you must. Note that you may
eventually learn that arg is a multivalued function.
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3. Compute 𝑧𝑧 and relate it to the cis form of 𝑧.

Once more, let 𝑧 = 𝑎 + 𝑏𝑖. Then

𝑧𝑧 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 − (𝑏𝑖)2 = 𝑎2 + 𝑏2.

If 𝑧 = 𝑟 cis 𝜃, then 𝑧𝑧 = 𝑟2. In other words, it is the square of the distance from 𝑧 to the origin.

4. Explain, using a picture, why tan(Arg 𝑧) = Im(𝑧)
Re(𝑧) .

This is basically just an application of soh-cah-toa to a triangle in the complex plane. The details are
shown in Figure 3.

𝑧 = (𝑎, 𝑏)

𝑏 = Im(𝑧)

𝑎 = Re(𝑧)
Arg 𝑧

Figure 3: tan(Arg 𝑧) = 𝑏
𝑎 = Im(𝑧)

Re(𝑧) .

5. Divide 𝑎+𝑏𝑖
𝑐+𝑑𝑖 by rationalizing the denominator.

𝑎 + 𝑏𝑖
𝑐 + 𝑑𝑖

⋅
𝑐 − 𝑑𝑖
𝑐 − 𝑑𝑖

= (𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)
𝑐2 + 𝑑2

= 𝑎𝑐 + 𝑏𝑑 + (𝑏𝑐 − 𝑎𝑑)𝑖
𝑐2 + 𝑑2

.

6. Divide 𝑟1 cis 𝜃
𝑟2 cis𝜙

using DeMoivre’s theorem.

We don’t have a rule yet for applying DeMoivre’s theorem for division, but we can quickly derive it. We
have

𝑟1 cis 𝜃
𝑟2 cis𝜙

⋅
cis𝜙
cis𝜙

=
𝑟1 cis 𝜃 cis𝜙

𝑟2 cis𝜙 cis𝜙
⏟⏞⏞⏟⏞⏞⏟

=1

Multiplying by conjugate

=
𝑟1 cis 𝜃 cis(−𝜙)

𝑟2
Using Arg 𝑧 = −Arg 𝑧

=
𝑟1
𝑟2

cis(𝜃 − 𝜙). Use DeMoivre’s theorem

7. Compare and contrast the methods of division in Problems 5 and 6. Which is more convenient?
Or does it depend on the circumstance?

Opinions may vary, but Problem 6’s method is definitely faster to do if the dividend and divisor are al-
ready in cis form. Problem 5’s is likely more convenient than converting from rectangular to cis, then back to
rectangular.

8.

43



(a) If 𝑧 = 𝑟 cis 𝜃, what is 1
𝑧?

As we hinted at in the previous problem, 1
𝑧 = 1

𝑟 cis(−𝜃):

1
𝑟 cis 𝜃

⋅
cis 𝜃
cis 𝜃

= cis 𝜃
𝑟 cis 𝜃 cis 𝜃

= cis(−𝜃)
𝑟| cis 𝜃|2

= 1
𝑟
cis(−𝜃).

(b) Explain how this shows 1
𝑎+𝑏𝑖 =

𝑎−𝑏𝑖
𝑎2+𝑏2 , without having to rationalize the denominator. (Hint:

use problems 3, 4, and 7.)

Let 𝑎 + 𝑏𝑖 = 𝑟 cis 𝜃. We have

1
𝑟 cis 𝜃

= 1
𝑟
cis(−𝜃)

= 𝑟 cis(−𝜃)
𝑟2

= 𝑎 − 𝑏𝑖
𝑎2 + 𝑏2

.

9. Compute (1 + 𝑖)13; pencil, paper, and brains only. No calculators!

We have 1 + 𝑖 =
√
2 cis 𝜋

4 , since it forms a 45◦ angle with the 𝑥-axis. Applying DeMoivre’s theorem,

(1 + 𝑖)13 =
(√

2 cis 𝜋
4

)13

=
(√

2
)13

cis 13𝜋
4

= 64
√
2
(
cos 5𝜋

4
+ 𝑖 sin 5𝜋

4

)

= 64
√
2

(
− 1√

2
− 1√

2
𝑖

)

= 64(−1 − 𝑖)
= −64 − 64𝑖.

10. Compute (1+𝑖
√
3)3

(1−𝑖)2 without a calculator.

We convert to cis form and apply DeMoivre’s theorem.

(1 + 𝑖
√
3)3

(1 − 𝑖)2
=

(
2 cis(𝜋3 )

)3

(√
2 cis(−𝜋

4 )
)2

= 8 cis(𝜋)
2 cis(−𝜋

2 )

= 8 ⋅ −1
2 ⋅ −𝑖

= 4
𝑖
⋅
−𝑖
−𝑖

= −4𝑖.
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11. Draw cis
(
𝜋
4

)
+ cis

(
𝜋
2

)
. Use your picture to prove an expression for tan

(
3𝜋
8

)
. (Hint: add them as

vectors.)

𝑧 =
(√

2
2
, 1 +

√
2
2

)

𝑤 =
(√

2
2
,
√
2
2

)

𝜋
4

3𝜋
8

1

1

Figure 4: Addition of cis
(
𝜋
4

)
+ cis

(
𝜋
2

)
as vectors.

The drawing is shown in Figure 4. The first vector, starting at the origin, is cis 𝜋
4 . The second vector,

starting at the endpoint of the first vector, is cis 𝜋
2 . The origin, along with points 𝑤 and 𝑧, form an isosceles

triangle. Furthermore, the apex of this triangle, at 𝑤, has an argument of 𝜋 − 𝜋
4 = 3𝜋

4 radians. Thus, the base
angles of the isosceles triangle are

𝜋 − 3𝜋
4

2
= 𝜋

8
.

Adding this with 𝜋
4 shows that the angle 𝑧 forms with the 𝑥-axis is

𝜋
8
+ 𝜋

4
= 3𝜋

8
,

our desired angle to analyze. We wish to find the tangent of this angle, which is just tan(Arg 𝑧). But we
know how to compute that!

tan(Arg 𝑧) = Im(𝑧)
Re(𝑧)

=
1 +

√
2
2√

2
2

⋅

√
2√
2

=
√
2 + 1
1

tan
(3𝜋

8

)
=
√
2 + 1.

12. Solve 𝑧3 = 1, and show that its solutions under the operation of multiplication form a group,
isomorphic to the rotation group of the equilateral triangle. Write a group table!
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There’s numerous ways to solve this, but let’s use cis form as usual. Let 𝑧 = 𝑟 cis 𝜃. Then

𝑧3 = 𝑟3 cis 3𝜃 = 1
⟹ 𝑟 = 1
cis 3𝜃 = 1
cos 3𝜃 = 1

3𝜃 = 2𝜋𝑘 For 𝑘 ∈ ℤ

𝜃 = 2𝜋𝑘
3

⟹ 𝜃 ∈
{
0, 2𝜋

3
, 4𝜋
3

}

⟹ 𝑧 ∈
{
cis 0, cis 2𝜋

3
, cis 4𝜋

3

}
.

Under multiplication, these three values of 𝑧 indeed form a group isomorphic to the rotation group of the
equilateral triangle, 𝐶3. In particular, cis 0 is the identity, cis 2𝜋

3 is a rotation by 120◦ counterclockwise, and

cis 4𝜋
3 is a rotation by 240◦ counterclockwise. Let 𝐼 = cis 0, 𝑟 = cis 2𝜋

3 , and 𝑟2 = cis 4𝜋
3 . Then, we have the

following group table:

⋅ 𝐼 𝑟 𝑟2
𝐼 𝐼 𝑟 𝑟2
𝑟 𝑟 𝑟2 𝐼
𝑟2 𝑟2 𝐼 𝑟

13.

(a) Find multiplication groups of complex numbers which are isomorphic to the rotation groups
for

i. a non-square rectangle

Since this rotation group is just the identity and a rotation of 180◦, we can just choose the group {−1, 1}
under multiplication. 1 is the identity, and −1 = cis 180◦ is the rotation.

ii. a regular hexagon.

We following in the footsteps of the equivalent problem for the equilateral triangle. We have elements

{
cis 0, cis 60◦, cis 120◦, cis 180◦, cis 240◦, cis 300◦

}
.

These are indeed rotations of 0, 60◦, 120◦, 180◦, 240◦, and 300◦, respectively. This set under multiplication
is isomorphic to the rotation group of the hexagon, 𝐶6.

(b) Make a table for each group.

i. a non-square rectangle

Let 𝐼 be the identity and 𝑟 be the rotation of 180◦.

⋅ 𝐼 𝑟
𝐼 𝐼 𝑟
𝑟 𝑟 𝐼

ii. a regular hexagon.

Let 𝐼 be the identity and 𝑟 be the rotation of 60◦. 𝑟𝑛 is defined in the natural way, by raising cis 60◦ to the
power 𝑛.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝑟5 𝐼 𝑟 𝑟2 𝑟3
𝑟5 𝑟5 𝐼 𝑟 𝑟2 𝑟3 𝑟4
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(c) Compare the regular hexagon’s group to the dihedral group of the equilateral triangle, 𝐷3.
Consider: how are they the same? How are they different? Is the difference fundamental?

The two groups are not isomorphic, although they are the same size; the difference is fundamental. The
hexagon’s rotation group, 𝐶6, has elements of periods {1, 2, 3, 3, 6, 6}, while 𝐷3 has elements of periods
{1, 2, 2, 2, 3, 3}. They do share some subgroups however: the trivial subgroup of just the identity, and the
subgroups generated by 𝑟2 and by 𝑟3 in 𝐶6, which are 𝐶3 and 𝐶2 respectively.

14. Which of the following sets is a group under (i) addition and (ii) multiplication?

(a) {0}

This is a group under (i) addition, since it has an identity 0, is closed, has 0 as 0’s inverse, and 0+(0+0) =
(0 + 0) + 0. It also is a group under (ii) multiplication, for the same reasons.

(b) {1}

This is not a group under (i) addition, since 1 + 1 = 2 ∉ {1}. It is a group under multiplication, though,
since 1 ⋅ 1 = 1 and all other properties are satisfied.

(c) {0, 1}

This is not a group under (i) addition, since 1+1 = 2 ∉ {0, 1}. It is also not a group under (ii) multiplication.
0 can’t be the identity, since 1 ⋅ 0 = 0 ≠ 1. 1 also can’t be the identity, since then 0 has no inverse 𝐾 such that
0 ⋅𝐾 = 1.

(d) {−1, 1}

This is not a group under (i) addition, since 1 + (−1) = 0 ∉ {±1}. It is a group under (ii) multiplication,
since it satisfies the group properties:

1. Identity: 1 is the identity

2. Associativity: Multiplication is associative

3. Invertibility: Each element is its own inverse

4. Closure: (±1)(±1) ∈ {±1}

(e) {1,−1, 𝑖,−𝑖}

This is not a group under (i) addition, since the sum of any two of the elements takes you out of the set. It
is a group under (ii) multiplication, however. One way to see this is that 1 = cis 0, −1 = cis𝜋, 𝑖 = cis 𝜋

2 , and

−𝑖 = 3𝜋
2 , which are all rotations of multiples of 90◦. In particular, it is isomorphic to 𝐶4, the rotation group of

the square.14

(f) {naturals}

This is not a group under (i) addition, because it cannot satisfy invertibility. There is no element 𝑋 ∈ ℕ
such that 1 +𝑋 = 𝐼 = 0, for example. This is also not a group under (ii) multiplication for the same reason.

(g) {integers}

This is a group under (i) addition, because all the group properties are satisfied. The inverse of an element
𝑛 is just −𝑛, addition is associative, the identity is 0, and the sum of two integers is another integer. It is a not
a group under (ii) multiplication, because no numbers except ±1 have integer multiplicative inverses.

(h) {rationals},ℚ

14Note that the only sets of complex numbers that form multiplication groups isomorphic to 𝐶𝑛 (𝑛 ≥ 1) are
{
cis 2𝜋𝑚

𝑛

}
(0 ≤ 𝑛 < 𝑚). It’s

fun to prove this!
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This is a group under (i) addition with identity element 0. The inverse of an element 𝑝
𝑞 is − 𝑝

𝑞 , addition
is associative, and the sum of two rational numbers is another rational number. It is not a group under (ii)
multiplication, because no number is the multiplicative inverse of 0.

(i) {ℚ without zero}

This is no longer a group under (i) addition, since the identity element needs to be 0. It is now, however,
group under (ii) multiplication, because all numbers have their inverses. Multiplication is associative, the
inverse of 𝑝

𝑞 is 𝑞
𝑝 , and the product of two rationals is another rational.

(j) {complex numbers},ℂ

This is a group under (i) addition with identity element 0. The inverse of an element 𝑧 is −𝑧, addition is
associative, and the sum of two complex numbers is another complex number. This is not a group under (ii)
multiplication, because again, no number is the multiplicative inverse of 0.

(k) {ℂ without zero}

This is no longer a group under (i) addition, since the identity element needs to be 0. It is now, however,
a group under (ii) multiplication, because all numbers have their inverses. Multiplication is associative, the
inverse of 𝑧 is 1

𝑧 , and the product of two complex numbers is another complex number.

15. Prove that (𝑟1 cis 𝜃)(𝑟2 cis𝜙) = 𝑟1𝑟2 cis(𝜃+𝜙) using brute force and the angle-sum trig identities for
cos and sin. Do you prefer this method or the one on the previous page? Which method gives
you a better understanding of why DeMoivre’s works?

(𝑟1 cis 𝜃)(𝑟2 cis𝜙) = 𝑟1𝑟2(cos 𝜃 + 𝑖 sin 𝜃)(cos𝜙 + 𝑖 sin𝜙)
= 𝑟1𝑟2(cos 𝜃 cos𝜙 + 𝑖 cos 𝜃 sin𝜙 + 𝑖 sin 𝜃 cos𝜙 − sin 𝜃 sin𝜙)
= 𝑟1𝑟2((cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙) + 𝑖(cos 𝜃 sin𝜙 + sin 𝜃 cos𝜙))
= 𝑟1𝑟2(cos(𝜃 + 𝜙) + 𝑖 sin(𝜃 + 𝜙))
= 𝑟1𝑟2 cis(𝜃 + 𝜙)

(Opinions may vary.) I actually prefer this because it’s kind of satisfying, but the previous way likely gives
a better understanding of the underlying mechanics.

16. Find an identity for sin 3𝜃 as we have done for cos. Most of the work is already done for you!

We already know that

cos 3𝜃 + 𝑖 sin 3𝜃 = cis 3𝜃 = (𝑐3 − 3𝑐2) + 𝑖(3𝑐2𝑠 − 𝑠3),

where 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃. Equating imaginary parts, we have

sin 3𝜃 = 3𝑐2𝑠 − 𝑠3

= 3 cos2 𝜃 sin 𝜃 − sin3 𝜃.

17. Your friend’s textbook says cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃, different from our identity. Who’s right?

Both are right. Our identity is

cos 3𝜃 = cos3 𝜃 − 3 cos 𝜃 sin2 𝜃.

Remembering that sin2 𝜃 = 1 − cos2 𝜃, we can change the form:

cos3 𝜃 − 3 cos 𝜃 sin2 𝜃 = cos3 𝜃 − 3 cos 𝜃(1 − cos2 𝜃)
= cos3 𝜃 + 3 cos3 𝜃 − 3 cos 𝜃
= 4 cos3 𝜃 − 3 cos 𝜃.
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18. Now you can finish the rest of the proof.

If you need context for this answer, check out the relevant textbook section.

(a) Draw 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛 approximately for the quadrilateral on the previous page.

The quadrilateral is shown in Figure 5.

0 = 𝐴

𝐵

𝐶

𝐷

𝑃

𝑅

𝑄

𝑆

𝑚
𝑛

Figure 5: The quadrilateral to analyze.

The relative magnitudes and directions are shown in Figure 6 below. We find 𝑎, 𝑏, 𝑐, 𝑑 from halving the
sides of the quadrilateral. 𝑚 and 𝑛 are just the vectors from 𝑃 to 𝑅 and 𝑄 to 𝑆, respectively.

𝑥

𝑦

𝑎

𝑏𝑐

𝑑

𝑚

𝑛

Figure 6: The relative magnitudes and directions of 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛.

(b) Why does showing 𝑛 = ±𝑖𝑚 prove the segments are (i) perpendicular and (ii) the same
length?

They are (i) perpendicular because 𝑖𝑧 is perpendicular to 𝑧 for all 𝑧 ≠ 0, and (ii) are the same length
because |𝑛| = | ± 𝑖𝑚| = |𝑖𝑚| = |𝑚|.

(c) Explain why 𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏.

The justification is geometric. We know that 𝐵 = 2𝑎, and we can get to the midpoint of 𝐵𝐶 by adding 𝑏.
Then, we go up to the center of the square on 𝐵𝐶 by adding 𝑖𝑏. This process is shown in Figure 7.
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𝐴

𝐵

𝐶

𝐷

𝑄

2𝑎

𝑏
𝑖𝑏

Figure 7: 𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏.

(d) Find formulae for 𝑅 and 𝑆 in terms of 𝑐 and 𝑑.

In a similar fashion, we have 𝑆 = −𝑑 + 𝑖𝑑 (note that it is −𝑑 because we are going counterclockwise now)
and 𝑅 = −2𝑑 − 𝑐 + 𝑖𝑐. The interpretations of these are shown in Figure 8 below.

𝐴

𝐵

𝐶

𝐷

𝑅

𝑆

𝑖𝑑 −𝑑

−2𝑑
−𝑐 𝑖𝑐

Figure 8: 𝑆 = −𝑑 + 𝑖𝑑 and 𝑅 = −2𝑑 − 𝑐 + 𝑖𝑐.

(e) Find 𝑚 and 𝑛 in terms of 𝑎, 𝑏, 𝑐, and 𝑑.

We have 𝑚 = 𝑅 − 𝑃 = (−2𝑑 − 𝑐 + 𝑖𝑐) − (𝑎 + 𝑖𝑎) and 𝑛 = 𝑄 − 𝑆 = (2𝑎 + 𝑏 + 𝑖𝑏) − (−𝑑 + 𝑖𝑑).

(f) Check that 𝑛 − 𝑖𝑚 = 0, using the fact that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0.

We evaluate straightforwardly:

(2𝑎 + 𝑏 + 𝑖𝑏 + 𝑑 − 𝑖𝑑) − 𝑖(−2𝑑 − 𝑐 + 𝑖𝑐 − 𝑎 − 𝑖𝑎) = 2𝑎 + 𝑏 + 𝑖𝑏 + 𝑑 − 𝑖𝑑 + 2𝑖𝑑 + 𝑖𝑐 + 𝑐 + 𝑖𝑎 − 𝑎
= 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 + 𝑖𝑑
= (𝑎 + 𝑏 + 𝑐 + 𝑑)(1 + 𝑖)
= 0.

19. In the previous problem, we drew squares outside a quadrilateral and connected their centers.
Conjecture what happens if we draw equilateral triangles outside a triangle and connect their
centers. Prove your conjecture using complex numbers.
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We conjecture that following this construction leads to connecting together another equilateral triangle. An
example, with the variables we’ll use labeled, is shown in Figure 9.

0 = 𝐴

𝐵

𝐶

𝐵′

𝑃
𝑄

𝑅

Figure 9: Equilateral triangles around a central, arbitrary triangle △𝐴𝐵𝐶 with 𝐴 at the origin.

Similar to the last problem, let 𝐴, 𝐵, and 𝐶 be numbers in the complex plane. Without loss of generality,
let 𝐴 = 0 be the origin. Also, define 𝑎 = 𝐵−𝐴

2 , 𝑏 = 𝐶−𝐵
2 , and 𝑐 = 𝐴−𝐶

2 to be the vectors going halfway along

each of ⃖⃖⃖⃖⃖⃗𝐴𝐵, ⃖⃖⃖⃖⃖⃗𝐵𝐶 , and ⃖⃖⃖⃖⃖⃗𝐶𝐴. Finally, let 𝑃 , 𝑄, and 𝑅 be the centers of the triangles on sides 𝐴𝐵, 𝐵𝐶 , and 𝐶𝐴
respectively.

Consider 𝑄 in the figure. It is on the 60◦ vertex of a 30-60-90 triangle △𝐵𝐵′𝑄, outlined in dotted line. We
know that ⃖⃖⃖⃖⃖⃖⃗𝐵𝐵′ = 𝑏. Thus, since 𝐵𝐵′ ∶ 𝐵′𝑄 =

√
3 ∶ 1,

𝐵′𝑄 = |𝑏|√
3
.

Furthermore, since 𝐵′𝑄 ⟂ 𝐵𝐵′, we know that it is 𝑠 ⋅ 𝑖𝑏 for some real 𝑠. Combining these facts,

𝐵′𝑄 = 𝑖𝑏
|𝑖𝑏|

|𝑏|√
3
= 𝑖𝑏√

3
.

Since 𝑄 = ⃖⃖⃖⃖⃖⃗𝐴𝐵 + ⃖⃖⃖⃖⃖⃖⃗𝐵𝐵′ + ⃖⃖⃖⃖⃖⃖⃖⃗𝐵′𝑄, we have

𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏√
3
.

With similar logic, we know that

𝑃 = 𝑎 + 𝑖𝑎√
3

𝑅 = −𝑐 + 𝑖𝑐√
3

Like with the quadrilateral, we know 𝑎 + 𝑏 + 𝑐 = 0, since 2(𝑎 + 𝑏 + 𝑐) = 0. To prove the dashed triangle is
indeed equilateral, we can just show that 𝑃 −𝑅 = (𝑄−𝑃 ) cis 120◦. After all, if the vectors ⃖⃖⃖⃖⃖⃗𝑅𝑃 and ⃖⃖⃖⃖⃖⃗𝑃𝑄 have an
angle of 120◦ between them and they have the same magnitude, △𝑃𝑄𝑅 is equilateral by SAS Congruence
as shown in Figure 10. Substituting in our found values for 𝑃 ,𝑄,𝑅 in terms of 𝑎, 𝑏, 𝑐, we get
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𝑃 − 𝑅 = (𝑄 − 𝑃 ) cis 120◦

𝑎 + 𝑖𝑎√
3
−

(
−𝑐 + 𝑖𝑐√

3

)
=

(
2𝑎 + 𝑏 + 𝑖𝑏√

3
−

(
𝑎 + 𝑖𝑎√

3

))(
−1
2
+

√
3
2

𝑖

)

(𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐√
3

=

(
𝑎 + 𝑏 + 𝑖𝑏 − 𝑖𝑎√

3

)(
−1
2
+

√
3
2

𝑖

)

= −1
2
𝑎 − 1

2
𝑏 − 𝑖𝑏 − 𝑖𝑎

2
√
3

+
√
3
2

𝑖𝑎 +
√
3
2

𝑖𝑏 + 𝑖𝑏 − 𝑖𝑎
2

⋅ 𝑖

=
(
−1
2
𝑎 − 1

2
𝑏 + 𝑖𝑏 − 𝑖𝑎

2
⋅ 𝑖
)
+

(
− 𝑖𝑏 − 𝑖𝑎

2
√
3

+
√
3
2

𝑖𝑎 +
√
3
2

𝑖𝑏

)

=
(
−1
2
𝑎 − 1

2
𝑏 − 1

2
𝑏 + 1

2
𝑎
)
+

(
𝑖𝑎 − 𝑖𝑏 + 3𝑖𝑎 + 3𝑖𝑏

2
√
3

)

= (−𝑏) +

(
4𝑖𝑎 + 2𝑖𝑏
2
√
3

)

= (−𝑏 + 𝑎 + 𝑏 + 𝑐) +

(
𝑖(2𝑎 + 𝑏)√

3

)

= (𝑎 + 𝑐) + 𝑖(2𝑎 + 𝑏 − (𝑎 + 𝑏 + 𝑐))√
3

(𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐√
3

= (𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐√
3

Tedious, but it worked.

𝑃 − 𝑅

𝑄 − 𝑃

120◦ ⟶

𝑃
𝑄

𝑅

60◦

Figure 10: SAS Congruence lets us say that 𝑃 −𝑅 = (𝑄−𝑃 ) cis 120◦ is sufficient to prove the triangle △𝑃𝑄𝑅
is equilateral.

20. The hard way to find an identity for tan 3𝜃 is to divide the identity for sin and cos that we already
found. Try this. Make sure your answer is in terms of tan only!

We have found that cos 3𝜃 = cos3 𝜃−3 cos 𝜃 sin2 𝜃 and sin 3𝜃 = 3 cos2 𝜃 sin 𝜃−sin3 𝜃. We set tan 3𝜃 = sin 3𝜃
cos 3𝜃

and evaluate:
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tan 3𝜃 = sin 3𝜃
cos 3𝜃

= 3 cos2 𝜃 sin 𝜃 − sin3 𝜃
cos3 𝜃 − 3 cos 𝜃 sin2 𝜃

= sin 𝜃
cos 𝜃

⋅
3 cos2 𝜃 − sin2 𝜃
cos2 𝜃 − 3 sin2 𝜃

⋅

1
cos2 𝜃
1

cos2 𝜃

= tan 𝜃 ⋅
3 − sin2 𝜃

cos2 𝜃

1 − 3 sin2 𝜃
cos2 𝜃

= tan 𝜃 ⋅ 3 − tan2 𝜃
1 − 3 tan2 𝜃

= 3 tan 𝜃 − tan3 𝜃
1 − 3 tan2 𝜃

.

21. The easier way to get an identity for tan 3𝜃 starts with setting 𝑧 = 1 + 𝑖 tan 𝜃.

(a) Why is Arg 𝑧 = 𝜃?

You can see this pretty quickly with a diagram, like in Figure 11. More algebraically, we have

tan(Arg 𝑧) = Im(𝑧) = tan(𝜃)

⟹ Arg 𝑧 = 𝜃.

𝑧

tan 𝜃

1
𝜃

Figure 11: Arg 𝑧 = tan−1
(
tan 𝜃
1

)
= 𝜃.

(b) Why is tan 3𝜃 = Im(𝑧3)
Re(𝑧3)?

We have

tan 3𝜃 = sin 3𝜃
cos 3𝜃

= Im(cis 3𝜃)
Re(cis 3𝜃)

.

But since 𝑧 makes an angle of 𝜃 with the 𝑥-axis, we can express it as 𝑟 cis 𝜃 for some real 𝑟. Thus,

Im(𝑧3)
Re(𝑧3)

= Im(𝑟3 cis 3𝜃)
Re(𝑟3 cis 3𝜃)

= Im(cis 3𝜃)
Re(cis 3𝜃)

,

which matches the expression for tan 3𝜃.

(c) Use (b) to find an identity for tan 3𝜃.

We expand out 𝑧3 and factor into real and imaginary parts:

𝑧3 = (1 + 𝑖 tan 𝜃)3 = 13 + 3𝑖 tan 𝜃 − 3 tan2 𝜃 − 𝑖 tan3 𝜃
= (1 − 3 tan2 𝜃) + 𝑖(3 tan 𝜃 − tan3 𝜃).
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Then we use our expression for tan 3𝜃 in terms of 𝑧3:

tan 3𝜃 = Im(𝑧3)
Re(𝑧3)

= 3 tan 𝜃 − tan3 𝜃
1 − 3 tan2 𝜃

.

22. Find multiplication groups of complex numbers isomorphic to rotation groups for the

(a) regular octagon.

We choose complex numbers corresponding to rotations of 0, 45◦,⋯ , 315◦:

𝑧 =
{
cis 0, cis 𝜋

4
, cis 𝜋

2
, cis 3𝜋

4
, cis𝜋, cis 5𝜋

4
, cis 3𝜋

2
, cis 7𝜋

4

}
.

(b) regular pentagon.

We simply choose complex numbers corresponding to rotations of 0, 72◦,⋯ , 288◦:

𝑧 =
{
cis 0, cis 2𝜋

5
, cis 4𝜋

5
, cis 6𝜋

5
, cis 8𝜋

5

}
.

23. Make tables for

(a) the rotation group of the regular octagon.

There are 8 elements. If 𝑟 is a rotation by 45◦, then the elements are 𝐼, 𝑟, 𝑟2, ..., 𝑟7. The group table is
shown below.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3
𝑟5 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝑟6 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝑟7 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

(b) the dihedral group of the square.

There are, once again, 4 ⋅ 2 = 8 elements. Let 𝑟 be a rotation by 90◦, and 𝑓 be a flip about say, the 𝑥-axis.
The group table is shown below.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3
𝑟 𝑟 𝑟2 𝑟3 𝐼 𝑓𝑟3 𝑓 𝑓𝑟 𝑓𝑟2
𝑟2 𝑟2 𝑟3 𝐼 𝑟 𝑓𝑟2 𝑓𝑟3 𝑓 𝑓𝑟
𝑟3 𝑟3 𝐼 𝑟 𝑟2 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝑓
𝑓 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝐼 𝑟 𝑟2 𝑟3
𝑓𝑟 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝑓 𝑟3 𝐼 𝑟 𝑟2
𝑓𝑟2 𝑓𝑟2 𝑓𝑟3 𝑓 𝑓𝑟 𝑟2 𝑟3 𝐼 𝑟
𝑓𝑟3 𝑓𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑟 𝑟2 𝑟3 𝐼

(c) Is the difference between them fundamental?

Yes, the difference is fundamental, even though they have the same order. The easiest way to see this is
that the latter group has 4 elements of order 2, but the former group has only 1 such element.

24. Which of the following tables defines a group? Why or why not?
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(a)

$ 𝐼 𝐴 𝐵 𝐶 𝐷
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷
𝐴 𝐴 𝐶 𝐷 𝐵 𝐼
𝐵 𝐵 𝐼 𝐶 𝐷 𝐴
𝐶 𝐶 𝐷 𝐴 𝐼 𝐵
𝐷 𝐷 𝐵 𝐼 𝐴 𝐶

This table does not define a group, because it does not follow associativity. For example, (𝐷$𝐴)$𝐴 =
𝐵$𝐴 = 𝐼 , but 𝐷$(𝐴$𝐴) = 𝐷$𝐶 = 𝐴.

(b)

# 𝐼 𝐴 𝐵 𝐶 𝐷
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷
𝐴 𝐴 𝐵 𝐶 𝐷 𝐼
𝐵 𝐵 𝐶 𝐷 𝐼 𝐴
𝐶 𝐶 𝐷 𝐼 𝐴 𝐵
𝐷 𝐷 𝐼 𝐴 𝐵 𝐶

This table is a group; in fact, it is a commutative group. The quickest way to see this is noting that it is (up
to isomorphism) the cyclic group of order 5, where 𝐴 = 𝑟, 𝐵 = 𝑟2, 𝐶 = 𝑟3, and 𝐷 = 𝑟4.

25. Name some subsets of the complex numbers that are groups under multiplication. I can name
an infinite number of both finite and infinite groups with this property, so after you list a few of
each type, try to generalize.

Some simple examples: {1}, {±1}, {±1,±𝑖}.
In general, we choose the 𝑛th roots of unity: the numbers of the form cis 2𝜋𝑘

𝑛 for 𝑘 ∈ ℤ. Each rotation is a
symmetry of the 𝑛-gon, and thus this set under multiplication is isomorphic to the cyclic group of order 𝑛.

26. Prove with a diagram that if |𝑧| = 1, then Im
(

𝑧
(𝑧+1)2

)
= 0.

To draw a diagram, we need to interpret these expressions as points on the complex plane. |𝑧| = 1 implies
that 𝑧 is 1 away from the origin. 𝑧 + 1 is 𝑧, translated right by 1 unit in the 𝑥-axis. Let 𝑧 + 1 = 𝑟 cis 𝜃. Then
(𝑧 + 1)2 = 𝑟2 cis 2𝜃, so it forms an angle of 2𝜃 with the origin.

If the quotient 𝑧
(𝑧+1)2 has no imaginary part, then (𝑧 + 1)2 is a real scalar times 𝑧. In other words, the two

numbers have the same complex argument. Thus, we wish to prove that Arg 𝑧 and Arg((𝑧 + 1)2) are equal.
The scenario is shown in Figure 12.

𝑧 𝑧 + 1

(𝑧 + 1)2

𝜃

1

1
𝜃

Figure 12: A graph of 𝑧, 𝑧 + 1, and (𝑧 + 1)2.
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As shown in the diagram, Arg(𝑧 + 1) = 𝜃. The triangle formed by 𝑂, 𝑧 and 𝑧 + 1 is isosceles, since it has
two sides of length 1. Furthermore, it has a base angle of 𝜃 by the parallel postulate. Thus, the angle marked
with a double line is also 𝜃, and Arg 𝑧 = 2𝜃. But Arg((𝑧 + 1)2) = 2𝜃! Thus, we have

Im
(

𝑧
(𝑧 + 1)2

)
= Im

(
𝑟1 cis 2𝜃
𝑟2 cis 2𝜃

)

= Im
(
𝑟1
𝑟2

+ 0𝑖
)

= 0.

This is not truly complete, because we have only considered 𝑧 in the first quadrant. In this case, extending
it to other locations of 𝑧 is pretty trivial. Nonetheless, I provide an algebraic solution for fun.

We wish to show that (𝑧 + 1)2 = 𝑘𝑧 for some real 𝑘. Express 𝑧 as cis 𝜃. Then

(cis 𝜃 + 1)2 = cis2 𝜃 + 2 cis 𝜃 + 1.
Our supposed 𝑘 is

𝑘 = (𝑧 + 1)2

𝑧
= cis2 𝜃 + 2 cis 𝜃 + 1

cis 𝜃
= cis 𝜃 + 2 + cis(−𝜃)

= cis 𝜃 + 2 + cis 𝜃
= 2Re(cis 𝜃) + 2,

which is indeed real. It’s interesting what the scale factor actually is. Furthermore, since Re(cis 𝜃) = cos 𝜃,
we have a polar equation

|𝑘𝑧| = 𝑟 = 2 cos 𝜃 + 2,
hinting that the path traced out by (𝑧+1)2 is in fact a cardioid! The cardioid produced is shown in Figure 13

below.

𝑥

𝑦

(4,0)

(0,2)

(0,−2)

Figure 13: The cardioid produced by (𝑧 + 1)2 for |𝑧| = 1.

It’s all connected, guys.

27. Prove geometrically that if |𝑧| = 1, then |1 − 𝑧| = ||||2 sin
(
Arg 𝑧
2

)||||.
To prove this geometrically, we must again consider what the various expressions in the desired equation

mean. |𝑧| = 1 means that 𝑧 is distance 1 from the origin. 1 − 𝑧 is the reflection of 𝑧 across the origin, then
translated by 1 units right.

To geometrically interpret 𝐴 = 2 sin
(
Arg 𝑧
2

)
, we halve the angle 𝜃 = Arg 𝑧 and draw a vector of length 2;

the imaginary component, or 𝑦 height, of this new point is the desired quantity.
The diagram of all this is shown in Figure 14.
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𝑧

1 − 𝑧−𝑧

1

1

1

𝜃

𝐴 = 2 cis 𝜃
2

𝜃∕2

2

𝜃

Figure 14: Graph of 𝑧, 1 − 𝑧, and sin
(
𝜃
2

)
.

We wish to show that the two lengths indicated in braces are equal. There’s a couple of ways to do this;
perhaps the most natural is to find a triangle congruent to the one formed by the origin, −𝑧, and 1 − 𝑧. This is
the other dashed triangle shown in Figure 15.

1 − 𝑧−𝑧

1

1

𝐴 = 2 cis 𝜃
2

𝜃∕2
1

1

1

𝜃

𝑂

𝑀

𝐹

Figure 15: The succulent triangle.

Because the angles of a triangle sum to 𝜋, we know the angle ∠𝑀𝐴𝐹 is 𝜋 − 𝜃
2 − 𝜋

2 = 𝜋−𝜃
2 . Furthermore,

△𝐴𝑀𝐹 is isosceles with an apex at 𝑀 , since the midpoint of the hypotenuse of a right triangle is equidistant
from all vertices. Thus, ∠𝑀𝐴𝐹 = ∠𝑀𝐹𝐴, and we have

∠𝐴𝑀𝐹 = 𝜋 − ∠𝑀𝐴𝐹 − ∠𝑀𝐹𝐴 = 𝜋 − 𝜋 − 𝜃
2

⋅ 2 = 𝜃.

Thus, by SAS Congruence, the two dashed triangles are congruent. Finally, pairing up the previously
indicated sides, we have

|1 − 𝑧| = 𝐴𝐹 =
||||Im

(
2 cis 𝜃

2

)|||| ,
as desired.
Technically, this proof is slightly incomplete, because some of these triangles do not exist as described for

𝜃 ≥ 90◦. You can extend it to these cases with no problem, but I’d also like to give a algebraic proof to show
its perks.

By the half-angle identity,

|||||
2 sin

(
Arg 𝑧
2

)|||||
=
|||||
±2

√
1 − cosArg 𝑧

2

|||||
=
√
2(1 − cosArg 𝑧).

Let 𝑧 = 𝑎 + 𝑏𝑖 = cis 𝜃; note that 𝑟 = 1 since |𝑧| = 1. We know that cosArg 𝑧 = 𝑎. Then
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|1 − (𝑎 + 𝑏𝑖)| = |(1 − 𝑎) − 𝑏𝑖|
=
√
𝑏2 + (1 − 𝑎)2

=
√
1 − 𝑎2 + (1 − 2𝑎 + 𝑎2)

=
√
2 − 2𝑎

=
√
2(1 − 𝑎)

=
√
2(1 − cosArg 𝑧).

This matches our expression using half-angle for
||||2 sin

(
Arg 𝑧
2

)||||.
I have a slight preference for the algebraic solution because it is quick, easier to understand, and mathe-

matically complete. Nonetheless, the geometric solution gives a better idea of why the equation is true.

28.

(a) Prove that if (𝑧 − 1)10 = 𝑧10, then Re(𝑧) = 1
2 . (Hint: if two numbers are equal, they have the

same magnitude.)

We do as the hint suggests. We know that |(𝑧 − 1)10| = |𝑧10|. Expanding this out would be rough, but we
can take the exponents out of the inside of the magnitude symbols15.

So |𝑧 − 1|10 = |𝑧|10. Since |𝑛| ≥ 0, we have |𝑧 − 1| = |𝑧|.
Let 𝑧 = 𝑎 + 𝑏𝑖. Recall that, by definition, |𝑤| =

√
Re(𝑤)2 + Im(𝑤)2. Then |𝑧 − 1| = |𝑎 + 𝑏𝑖 − 1| =√

(𝑎 − 1)2 + 𝑏2 and |𝑧| = |𝑎 + 𝑏𝑖| =
√
𝑎2 + 𝑏2. We set these equal and solve:

√
(𝑎 − 1)2 + 𝑏2 =

√
𝑎2 + 𝑏2

(𝑎 − 1)2 + 𝑏2 = 𝑎2 + 𝑏2

(𝑎 − 1)2 = 𝑎2

𝑎 − 1 = ±𝑎.

If 𝑎 − 1 = 𝑎, then −1 = 0, which is dumb. Thus, 𝑎 − 1 = −𝑎, so 𝑎 = 1
2 and indeed, Re(𝑧) = 1

2 as desired.

(b) How many solutions does this equation have?

We have (𝑧− 1)10 = 𝑧10, so (𝑧− 1)10 − 𝑧10 = 𝑃 (𝑧) = 0, where 𝑃 is a polynomial of degree 9. Thus, by the
Fundamental Theorem of Algebra, there are 9 solutions... if there aren’t any repeated roots. So this is only
truly complete if we know there are no roots which appear in the factorization twice or more. Unfortunately, I
can’t think of a way to do this without calculus.16

Let’s start over. We should use the fact that Re(𝑧) = 1
2 . A simple diagram reveals that 𝑧 and 𝑧 − 1

are symmetric about the 𝑦-axis, since Re(𝑧) = Re
(
1
2 + 𝑏𝑖

)
= −Re

(
1
2 + 𝑏𝑖 − 1

)
. The diagram is shown in

Figure 16.

15This is true because |(𝑟 cis 𝜃)𝑛| = |𝑟𝑛 cis 𝑛𝜃| = |𝑟𝑛|.
16For that route, we simply check that 𝑃 ′′(𝑧) ≠ 0 for all solutions, which isn’t pleasant until a clever rearrangement and substitution.

Try it if you know how!
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Re(𝑧) = 1
2

𝑧𝑧 − 1

𝜋
2
− 𝜙

𝜙𝜙

Figure 16: 𝑧 and 1 − 𝑧, residents of the complex plane.

Let 𝑧 in the first quadrant make a angle 𝜙 to the ±𝑦-axis. Note that we’re using the 𝑦-axis, not the 𝑥-axis,
for mathematical convenience. In general, for 𝑧 in the first and fourth quadrants17, we have Arg 𝑧 = 𝜋

2 − 𝜙
and Arg(𝑧 − 1) = 𝜋

2 + 𝜙. Since |𝑧| = |𝑧 − 1| = 𝑟, we have

𝑧 = 𝑟 cis
(𝜋
2
− 𝜙

)
; 𝑧 − 1 = 𝑟 cis

(𝜋
2
+ 𝜙

)
.

Since (𝑧 − 1)10 = 𝑧10, we have

(
𝑟 cis

(𝜋
2
− 𝜙

))10
=
(
𝑟 cis

(𝜋
2
+ 𝜙

))10

𝑟10 cis(5𝜋 − 10𝜙) = 𝑟10 cis(5𝜋 + 10𝜙)
cis(5𝜋 − 10𝜙) = cis(5𝜋 + 10𝜙)

5𝜋 − 10𝜙 + 2𝜋𝑘 = 5𝜋 + 10𝜙 For some 𝑘 ∈ ℤ
20𝜙 = 2𝜋𝑘

𝜙 = 2𝜋𝑘
20

.

To find all unique solutions, we restrict 𝑘 to the range 0 ≤ 𝑘 ≤ 19... wait, isn’t that 20 solutions?
The issue is that 𝑧 must be in the first or fourth quadrant, so that our premise |𝑧| = |𝑧 − 1| is true. That

means 0 < 𝜙 < 𝜋, a strict relation because 𝜙 = 0 or 𝜙 = 𝜋 only gives values along the 𝑦-axis, which does not
intersect with Re(𝑧) = 0. Solving this gives

0 < 2𝜋𝑘
20

< 𝜋

0 < 𝜋𝑘 < 10𝜋

0 < 𝑘 < 10

𝑘 ∈ {1, 2, ..., 8, 9},

which is 9 solutions, in agreement with our polynomial argument.

29. I claim that 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 = cis 𝜃, for 𝜃 in radians.

(a) Find 𝑒−𝑖𝜃 .

𝑒−𝑖𝜃 = cos(−𝜃) + 𝑖 sin(−𝜃) = cos 𝜃 − 𝑖 sin 𝜃.

(b) Find 𝑒𝑖𝜃+𝑒−𝑖𝜃
2 .

17If 𝑧 is in the fourth quadrant, then you’d define 𝜙 as 𝜋 + angle to negative 𝑦axis, where the angle is taken clockwise so it’s positive.
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𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
= cos 𝜃 + 𝑖 sin 𝜃 + cos 𝜃 − 𝑖 sin 𝜃

2
= cos 𝜃.

(c) Find 𝑒𝑖𝜃−𝑒−𝑖𝜃
2𝑖 .

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
= cos 𝜃 + 𝑖 sin 𝜃 − (cos 𝜃 − 𝑖 sin 𝜃)

2𝑖
= sin 𝜃.

30. Use your new, complex definitions for cos and sin to find:

(a) cos2 𝜃 + sin2 𝜃

(
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2

)2
+
(
𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖

)2
=
(
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2

)2
−
(
𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)2

=
(
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
+ 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)(
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
− 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)

=
(
𝑒−𝑖𝜃

) (
𝑒𝑖𝜃

)

= 𝑒−𝑖𝜃+𝑖𝜃

= 𝑒0

= 1.

That was expected.

(b) tan 𝜃

tan 𝜃 = sin 𝜃
cos 𝜃

=
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
𝑒𝑖𝜃+𝑒−𝑖𝜃

2

= 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

𝑖(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)
.

(c) cos 2𝜃

cos 2𝜃 = 𝑒2𝑖𝜃 + 𝑒−2𝑖𝜃

2
.

(d) sin 2𝜃

sin 2𝜃 = 𝑒2𝑖𝜃 − 𝑒−2𝑖𝜃

2𝑖
.

(e) What kind of group is generated by
{
𝑒𝑖𝜃 , 𝑒−𝑖𝜃

}
under the operation of multiplication if 𝜃 is

an integer? A rational multiple of 𝜋?

If 𝜃 = 0, then the group is the trivial group of order 1. If 𝜃 is any other integer, then a group isomorphic to
the additive group of the integers is generated. We pair up 𝑒𝑖𝑘𝜃 with the integer 𝑘, so that

𝑒𝑖𝑘1𝜃 ⋅ 𝑒𝑖𝑘2𝜃 = 𝑒𝑖(𝑘1+𝑘2)𝜃 ↔ 𝑘1 + 𝑘2.

If 𝜃 is a rational multiple of 𝜋, say 𝑝
𝑞 ⋅ 2𝜋 where gcd(𝑝, 𝑞) = 1, then we get (up to isomorphism) cyclic group

of order 𝑞.
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31. You’ve used the quadratic equation throughout high school, but there’s also a cubic equation
that finds the roots of any cubic. Let’s derive it, starting with the cubic 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.

(a) Make the substitution 𝑥 = 𝑦 − 𝑏
3 . Combine like terms to create an equation of the form

𝑦3 − 3𝑝𝑦 − 2𝑞 = 0, with 𝑝, 𝑞 in terms of 𝑏, 𝑐, and 𝑑.

(
𝑦 − 𝑏

3

)3
+ 𝑏

(
𝑦 − 𝑏

3

)2
+ 𝑐

(
𝑦 − 𝑏

3

)
+ 𝑑 = 0

(
𝑦3 − 3 ⋅ 𝑏𝑦

2

3
+ 3 ⋅ 𝑏

2𝑦
9

− 𝑏3

27

)
+
(
𝑏𝑦2 − 2𝑏2𝑦

3
+ 𝑏3

9

)
+
(
𝑐𝑦 − 𝑏𝑐

3

)
+ 𝑑 = 0

𝑦3 + (−𝑏 + 𝑏) 𝑦2 +
(
𝑏2𝑦
3

− 2𝑏2𝑦
3

+ 𝑐
)
𝑦 +

(
− 𝑏3

27
+ 𝑏3

9
− 𝑏𝑐

3
+ 𝑑

)
= 0

𝑦3 +
(
𝑐 − 𝑏2

3

)
𝑦 +

(
𝑑 − 𝑏𝑐

3
+ 2𝑏3

27

)
= 0

𝑦3 − 3
(
𝑏2

9
− 𝑐

3

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑝

𝑦 − 2
(
𝑏𝑐
6

− 𝑏3

27
− 𝑑

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞

= 0.

Thus, 𝑝 = 𝑏2

9 − 𝑐
3 and 𝑞 = 𝑏𝑐

6 − 𝑏3

27 −
𝑑
2 . This type of cubic equation—in which the 𝑥3 coefficient is 1 and the

𝑥2 coefficient is 0—is known as a depressed cubic. Make of that what you will.

(b) Rearrange this equation as 𝑦3 = 3𝑝𝑦 + 2𝑞.

𝑦3 = 3
(
𝑏2

9
− 𝑐

3

)
𝑦 + 2

(
𝑏𝑐
6

− 𝑏3

27
− 𝑑

2

)
.

(c) Make the substitution 𝑦 = 𝑠+ 𝑡 into (b), and prove that 𝑦 is a solution of the cubic in part (a)
if 𝑠𝑡 = 𝑝 and 𝑠3 + 𝑡3 = 2𝑞.

We substitute 𝑦 = 𝑠 + 𝑡 and use the fact that 𝑠𝑡 = 𝑝 and 𝑠3 + 𝑡3 = 2𝑞 to simplify.

(𝑠 + 𝑡)3 = 3𝑝(𝑠 + 𝑡) + 2𝑞
𝑠3 + 3𝑠2𝑡 + 3𝑠𝑡2 + 𝑡3 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞

3𝑠(𝑠𝑡) + 3𝑡(𝑠𝑡) + 𝑠3 + 𝑡3 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞
3𝑠𝑝 + 3𝑡𝑝 + 2𝑞 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞

0 = 0.

This checks out.

(d) Eliminate 𝑡 between these two equations to get a quadratic in 𝑠3.

We have 𝑡3 = 2𝑞 − 𝑠3. Also, (𝑠𝑡)3 = 𝑝3, so

(𝑠𝑡)3 = 𝑠3𝑡3 = 𝑠3(2𝑞 − 𝑠3) = 𝑝3

−(𝑠3)2 + 2𝑞𝑠3 − 𝑝3 = 0
(𝑠3)2 − 2𝑞𝑠3 + 𝑝3 = 0.

(e) Solve this quadratic to find 𝑠3. By symmetry, what is 𝑡3?
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Let 𝑤 = 𝑠3. Then the above quadratic is 𝑤2 − 2𝑞𝑤 + 𝑝3 = 0. The solutions are

𝑠3 = 𝑤 =
2𝑞 ±

√
4𝑞2 − 4𝑝3
2

=
2𝑞 ± 2

√
𝑞2 − 𝑝3

2
= 𝑞 ±

√
𝑞2 − 𝑝3.

We have 𝑡3 = 2𝑞 − 𝑠3 = 2𝑞 − (𝑞 ±
√
𝑞2 − 𝑝3) = 𝑞 ∓

√
𝑞2 − 𝑝3. This inverted ± sign, ∓, means that when

𝑠3’s ± sign is positive, the ∓ sign is negative, and vice versa.

(f) Find a formula for 𝑦 in terms of 𝑝 and 𝑞. What about a formula for 𝑥?

Taking cube roots of both sides of our expressions for 𝑡3 and 𝑠3, we find that

𝑠 =
3
√

𝑞 ±
√
𝑞2 − 𝑝3,

𝑡 =
3
√

𝑞 ∓
√
𝑞2 − 𝑝3.

We must keep in mind, however, that over the complex numbers, taking cube roots outputs 3 possible
values. Thus, the three solutions for 𝑠 and 𝑡 are

𝑠 =
3
√

𝑞 ±
√
𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘

3
,

𝑡 =
3
√

𝑞 ∓
√
𝑞2 − 𝑝3 ⋅ cis

(
2𝜋 − 2𝜋𝑘

3

)
,

where 𝑘 ∈ {0, 1, 2} and the cube root is taking its principal value. We multiply them by cis with these
angles to preserve the fact that 𝑠𝑡 = 𝑞, since otherwise it would produce another result:

3
√

𝑞 ±
√
𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘

3
⋅

3
√

𝑞 ∓
√
𝑞2 − 𝑝3 ⋅ cis

(
2𝜋 − 2𝜋𝑘

3

)
= 3

√(
𝑞 ±

√
𝑞2 − 𝑝3

)(
𝑞 ∓

√
𝑞2 − 𝑝3

)
⋅ cis 2𝜋

= 3
√
𝑞2 − (𝑞2 + 𝑝3)

= 𝑝.

Thus, we have

𝑦 = 𝑠 + 𝑡 =
3
√

𝑞 ±
√
𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘

3
+

3
√

𝑞 ∓
√
𝑞2 − 𝑝3 ⋅ cis

(
2𝜋 − 2𝜋𝑘

3

)
.

To get 𝑥, we substitute 𝑥 = 𝑦 − 𝑏
3 to get

𝑥 =
3
√

𝑞 ±
√
𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘

3
+

3
√

𝑞 ∓
√
𝑞2 − 𝑝3 ⋅ cis

(
2𝜋 − 2𝜋𝑘

3

)
− 𝑏

3
.

You could substitute our values of 𝑝, 𝑞 in terms of 𝑏, 𝑐, 𝑑 to get a monstrous equation for 𝑥 in terms of only
𝑏, 𝑐, 𝑑... but no thanks.

(g) What if we started with 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, with a coefficient in front of the 𝑥3 term as
well? Can you come up with a formula for 𝑥?

Sure! We divide through the equation by 𝑎:

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑
𝑎

= 0

⟹ 𝑥3 + 𝑏
𝑎
+ 𝑐

𝑎
+ 𝑑

𝑎
= 0.

We can then attack this as we already did, setting 𝑏′ = 𝑏
𝑎 , 𝑐′ = 𝑐

𝑎 and 𝑑′ = 𝑑
𝑎 , then applying the formula.
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32. Starting with the same cubic as in problem 31b.

(a) Let 𝑐 = cos 𝜃. Remember that cos 3𝜃 = 4𝑐3 − 3𝑐, as we proved. Substitute 𝑦 = 2𝑐
√
𝑝 into

𝑦3 = 3𝑝𝑦 + 2𝑞 to obtain 4𝑐3 − 3𝑐 = 𝑞
𝑝3∕2 .

We substitute and proceed:

𝑦3 = 3𝑝𝑦 + 2𝑞
(2𝑐

√
𝑝)3 = 3𝑝(2𝑐

√
𝑝) + 2𝑞

8𝑐3𝑝3∕2 = 6𝑐𝑝3∕2 + 2𝑞
8𝑐3𝑝3∕2 − 6𝑐𝑝3∕2 = 2𝑞

4𝑐3 − 3𝑐 = 2𝑞
2𝑝3∕2

= 𝑞
𝑝3∕2

.

(b) Provided that 𝑞2 ≤ 𝑝3, show that 𝑦 = 2
√
𝑝 cos

(
1
3 (𝜃 + 2𝜋𝑛)

)
, where 𝑛 is an integer. Why does

this yield all three solutions?

This isn’t actually hard. We know that cos 3𝜃 = 4𝑐3 − 3𝑐 = 𝑞
𝑝3∕2 , so there are three possible values for

cos 𝜃 = 𝑐. Namely, if 𝜃0 =
1
3 cos

−1 𝑞
𝑝3∕2 is the principal value, then we also have unique solutions

𝜃1 =
2𝜋
3

+ 𝜃0, 𝜃2 =
4𝜋
3

+ 𝜃0,

because multiplying these by 3 to get 3𝜃 just adds a multiple of 2𝜋. Indeed, we have

𝑐 = cos 1
3
(𝜃 + 2𝜋𝑛)

as a solution for any integer 𝑛. Substituting into the expression for 𝑦, we get

𝑦 = 2𝑐
√
𝑝 = 2 cos

(1
3
(𝜃 + 2𝜋𝑛)

)√
𝑝,

as desired. This yields all three solutions because, as we observed, the only unique values this makes
are for 𝑛 ∈ {0, 1, 2}.

Note that if 𝑞2 > 𝑝3, then this strategy actually still works, but you have to define cos (and cos−1) over a
larger, complex domain. This is certainly possible though!

(c) Explain how you would find 𝜃 from 𝑝 and 𝑞, and how we would use what we have found to
solve an arbitrary cubic 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.

We have cos 3𝜃 = 𝑞
𝑝3∕2 , so

𝜃 = cos−1 𝑞
𝑝3∕2

.

The steps to solving an arbitrary cubic are the following:

1. Divide through by 𝑎 to get a new cubic 𝑥3 + 𝑏′𝑥2 + 𝑐′𝑥 + 𝑑′ = 0.

2. Compute 𝑝 = 𝑏′2

9 − 𝑐′

3 and 𝑞 = 𝑏′𝑐′

6 − 𝑏′3

27 − 𝑑′

2 .

3. Compute 𝜃 = cos−1 𝑞
𝑝3∕2 .

4. Substitute this value of 𝜃 into 𝑥 = 𝑦 − 𝑏
3 = 2

√
𝑝 cos

(
1
3 (𝜃 + 2𝜋𝑛)

)
− 𝑏

3 , where 𝑛 ∈ {0, 1, 2}.

These two problems were a doozy! This method of solving the cubic was known to French mathematician
François Viète in the late 16th century. It also has a very pretty geometric interpretation. Wikipedia gives excel-
lent details here: https://en.wikipedia.org/wiki/Cubic_equation\#Geometric_interpretation_of_the_roots.
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